
Project Title: "Smart Railway Ticket Booking System"

Overview:

Develop a smart railway ticket booking system where:

• Users enter the number of seats & passenger details (No manual seat selection).

• The system must intelligently allocate seats in the same row (where possible).

• Pending seats in partially filled rows should be filled first before opening a new row.

• A complex analytics dashboard should aggregate booking data in multiple ways.

Key Features

Backend (Node.js, Express, MongoDB, WebSocket’s, Redis for concurrency handling)

Train & Compartment Structure

• Each train consists of multiple compartments (A1, A2, B1, etc.).

• Each compartment has multiple rows of 6 seats per row.

• Data Model:

o Train Details (Train Number, Name, Route)

o Compartment Details (Total Seats, Available Seats, Rows & Seats Status)

Smart Seat Allocation Algorithm (IRCTC Style)

1. Pending Seat Handling

o If a row has pending seats, new passengers should fill the gaps first.

o Example:

▪ User 1 books 5 seats → 1 seat is pending.

▪ User 2 books 6 seats → They get the next empty row.

▪ User 3 books 1 seat → Assigned to the row where 1 seat was pending.

2. Multiple Seat Booking (Group Allocation)

o If a user books multiple seats, they must be assigned seats in the same row.

o If not enough seats are available in one row, move to the next completely empty

row.

Concurrency & Real-Time Updates

• Use MongoDB transactions and Redis locking to prevent double booking.

• Use WebSockets to update seat availability in real time.

Booking Flow

• User enters:

o Number of seats required

o Passenger details (Name, Age, Gender, etc.)

• System auto-allocates seats based on pending seat logic.

• Booking is confirmed with a PNR Number.

MongoDB Optimization

• Indexes for fast seat searches.

• Aggregation pipelines for analytics.

Advanced Analytics Dashboard (MongoDB Aggregations)

1. Booking Time Trends

• Find peak booking hours of the day.

• Find trains that get booked first.

• Aggregation Query: Group bookings by train & count per hour.

2. Group vs. Solo Travelers

• Find how many users book in groups (3+ seats) vs. solo travelers.

• Aggregation Query: Group by number_of_seats and count.

3. Booking Lead Time Analysis

• Find out how early users book their tickets before travel.

• Aggregation Query: Compute the difference between booking_date and travel_date.

Frontend (React, Redux, TailwindCSS, WebSockets)

Train Search & Booking Form

• Users can search for trains by Source, Destination, Date.

• Enter number of seats & passenger details (No manual seat selection).

Live Seat Allocation Status

• Show total available seats per compartment.

• Real-time updates as seats get booked (via WebSockets).

Booking Confirmation

• Users receive a PNR Number after successful booking.

Submission Guidelines

• GitHub Repo with clean code & README.

• API Documentation (swagger, …etc).

Good luck!

